Salah satu percobaan terpenting dalam fisika terjadi di sebuah kamar gelap di Cambridge, Inggris, pada sekitar tahun 1665. Fisikawan, Isaac Newton, melewatkan berkas sinar matahari menembus sebuah lubang di tirai dan menyinarkannya ke sebuah prisma kaca. Ia terkejut, pita-pita sejajar warna pelangi tampak di tembok di sebalik prisma. Dari pengamatan ini, Newton menyimpulkan bahwa sinar matahari terdiri atas campuran warna yang telah dipisahkan oleh prisma. Ketika ia memilih hanya satu warna dan menyinarkannya melalui prisma kedua, tidak terjadi perubahan lebih lanjut (Clark, 2009).
Fisika modern dapat dengan mudah menjelaskan apa yang terjadi pada kamar Newton. Cahaya putih tersusun atas campuran warna pelangi, dari warna merah hingga ungu dengan keseluruhan warna lain diantaranya. Saat memasuki prisma, setiap warna dibiaskan (dibelokkan). Namun cahaya merah tidak dibelokkan sejauh cahaya ungu. Akibatnya, cahaya merah dan ungu keluar dari prisma pada sudut yang berbeda (dan warna-warna di antaranya muncul di antara kedua sudut warrna-warna itu). Ini berpengaruh pada penyebaran warna penyusun cahaya putih menjadi sebuah spektrum. Warna-warna tersebut adalah merah, jingga, kuning, hijau, biru, nila, dan ungu (Clark, 2009).
Jenis pembiasan khusus oleh prisma dikenal sebagai dispersi. Dan berbagai warna yang dihasilkan disebut spektrum. Ini menjelaskan warna-warna yang kadang terlihat ketika sinar matahari menyinari gelas kristal atau fiting lampu hias. Ini juga menjelaskan pembentukan pelangi (Clark, 2009).
Peristiwa penguraian gelombang (dispersi) akan terjadi pada saat kumpulan gelombang dengan laju yang sama merambat dalam suatu medium sampai pada suatu bidang batas sehingga masing-masing gelombang mengalami pembiasan dengan laju yang berbeda-beda (indeks bias yang berbeda). Sehingga kumpulan gelombang tersebut akan diuraikan menjadi gelombang masing-masing. Dengan demikian, jika kita merambatkan satu kelompok gelombang dalam suatu medium, maka pada saat kelompok gelombang itu sampai pada bidang batas kelompok gelombang sesuai dengan arah rambat gelombang bias (Suroso, 2002).
Dari uraian di atas, dapat dikatakan bahwa indeks bias merupakan fungsi panjang gelombang. Oleh karena itu hukum pembiasan Snell menunjukkan bahwa cahaya dengan berbagai panjang gelombang yang berbeda dibelokkan pada berbagai sudut yang berbeda saat datang mengenai suatu bahan refraktif. Nilai indeks bias umumnya menurun seiring bertambahnya panjang gelombang. Hal ini berarti bahwa cahaya ungu membelok lebih besar dibandingkan cahaya merah saat merambat dalam suatu bahan refraktif. Seberkas sinar cahaya dengan panjang gelombang tunggal yang datang pada prisma dari sebelah kiri keluar dibiaskan dari arah rambat awalnya oleh sudut δ yang disebut sudut deviasi (Serway dan Jewwet, 2010). Secara matematis indeks bias (n) prisma adalah:
Dengan sebagai sudut pembias prisma, dan adalah sudut deviasi minimum. Sudut deviasi adalah sudut antara perpanjangan sinar datang dengan perpanjangan sinar-sinar bias pada sisi kanan prisma. Sedangkan sudut deviasi minimum sudut terkecil yang dapat dihasilkan dengan mengubah sudut datang. Deviasi minimum terjadi jika sinar melalui prisma secara simetris. Berdasarkan persamaan 1 di atas, maka untuk spektrum warna merah, kuning dan biru dapat diturunkan persamaan indeks bias bahan prisma untuk berbagai panjang gelombang yaitu:
Sedangkan daya dispersi bahan prisma yaitu :
Percobaan atau eksperimen untuk membuktikan sifat pembiasan dan dispersi cahaya oleh prisma dapat diketahui dengan menggunakan alat ukur sudut dengan teropong yang disebut spektrometer. Untuk itu, sebelum anda melakukan percobaan untuk mengungkapkan karakteristik prisma, maka terlebih dahulu anda harus mengetahui cara menggunakan dan membaca skala pada spektrometer. Susunan spektrometer dan komponen komponennya diperlihatkan seperti gambar di bawah ini.
Gambar 1. Susunan spektrometer dan komponen-komponennya
Secara umum, komponen spektrometer oprik yang harus diketahui dalam melakukan eksperimen pengukuran dispersi dan pembiasan cahaya oleh prisma adalah sebagai berikut:
1. Kolimator
Kolimator merupakan tabung yang dilengkapi dengan sebuah lensa yang berhadapan dengan prisma, dan sebuah celah yang dapat diatur-atur lebarnya yang berhadapan dengan sumber cahaya.
2. Teleskop
Teleskop ini berfungsi untuk menentukan posisi benang silang maupun spectrum warna. Teleskop dilengkapi sebuah lensa obyektif yang menghadap langsung dengan meja prisma, dan sebuah lensa okuler yang dapat ditarik atau didorong. Teleskop ini juga dapat diputar ke kiri maupun ke kanan. Teleskop bagian bawahnya dilengkapi dengan skala derajat yang dapat dibaca pada skala S1 atau S2 (ada dua tempat untuk membaca skala). Skala yang berputarbersama teleskop dan mengitari lempengan skala utama disebut skala nonius.
3. Meja spektrometer
Meja ini berfungsi untuk menempatkan prisma. Meja ini dapat berputar dan memiliki kunci sudut pembias prisma (Herman, 2015).
4. Busur Derajat
Busur derajat pada komponen spektrometer optik pada dasarnya berbentuk lingkaran terletak di bawah meja optik prisma. Busur ini bertujuan untuk dapat mengetahui sudut bias ataupun sudut dispersi ketika melakukan pengukuran bias cahaya maupun dalam menentukan daya dispersi yang dihasilkan oleh prisma.
Demikian artikel tentang Teori Singkat Prisma semoga bermanfaat bagi pembaca baik itu kalangan akademisi yang menggeluti bidang ilmu fisika ataupun kalangan masyarakat umum untuk menambah wawasan akan bidang ilmu lain.
Sumber Referensi
Clark, John O. 2009. Materi Fisika! Volume 4 CAHAYA. Bandung: PT. Intan Sejati.
Herman dan Asisten LFD. 2015. Penuntun Praktikum Fisika Dasar 2. Makassar: Universitas Negeri Makassar.
Serway, Raymond A. dan John W. Jewett. 2010. Fisika—untuk Sains dan Teknik Buku 2 Edisi 6. Jakarta: Salemba Teknika.
Suroso. 2002. Ensiklopedi Sains dan Kehidupan. Jakarta: CV. Tarity Samudera Berlian
Tags:
Fisika Dasar